Sabtu, 20 April 2013

Tugas Pengantar Teknologi Game (Bulan 1)

1.        Sebutkan algoritma untuk menggambar garis!
Dalam pembuatan garis, dibutuhkan algoritma agar garis tersebut bisa terbentuk. Algotima pembuatan garis yang umum digunakan diantaranya:
a.       Algortima DDA (Digital Defferential Analyzer)
b.      Algortima Bresenham
c.       Algortima Midpoint
2.        Berikan satu (1) algoritma untuk menggambar garis!
Salah satu contoh bentuk algoritma untuk membuat garis, kami akan menggunakan algotima Bresenham. Cara menentukan garis dengan menggunakan algoritma Bresenham adalah sebagai berikut:
a.      Tentukan koordinat awal garis (x0,y0)
b.     Tentukan koordinat akhir garis (x1,y1)
c.      Hitung jarak mendatar ke 2 titik (dx), Dx=x1-x0
d.      Hitung jarak mendatar ke 2 titik (dx), Dy=y1-y0
e.      Tentukan faktor pembagi (mencari yg lebih panjang)
f.      Apakah dx>dy,bila ya
  - Step=dx
         Bila tidak
            Step=dy
g.       Hitung faktor penambah ke koordinat mendatar dan vertikal titik berikut (x_tambah,y_tambah)
X_tambah=dx/step
Y_tambah=dy/step
h.      Buat loop mulai titik ke 1 sampai titik ke step
For k=1 to step
i.        Hitung koodinat titik berikutnya
X=x+x_tambah
Y=y+y_tambah
j.        gambar pikxel pada koordinat (x,y)
Catatan : koordinat x,y harus bulat (integer), sehingga hasil dari perhitungan diatas harus diinteger-kan
k.       Ulangi langkah ke 7, dan seterusnya sampai titik ke step 


3.        Yang harus diperhatikan dalam menggambar garis:
Ø  Ketebalan garis (thickness) dan
Ø  Bentuk tepi garis (ends): Butt, Round, dan Square.
Berikan contoh gambar garis dengan bentuk tepi Butt, Round, dan Square!

4.        Penggabungan garis (Joining): Ugly, Bevel, Round, Miter.
a.       Bevel       : Membentuk sudut siku
b.      Round      : Membentuk sudut bulat atau tumpul
c.       Milter       : Membentuk sudut lancip
d.      Ugly         : Membentuk sudut tidak beraturan.

5.         Berikan contoh:
a. Satu gambar objek.
b. Hasil transformasi objek tersebut yang ditransformasikan dengan Scale, Rotate, Shear, Flip, Translate, dan Rotasi
objek awal, jang kiri hanya digunakan sebagai pembanding.

Rotate = rotasi. Operasi rotasi pada sumbu x sebesar 90 derajat

           
            Scale objak 2 kali.

            Operasi translasi/ pergeseran sebanyak 2 satuan terhadap sumbu x.

            Operasi flip.

            Shear

6.    Apakah perbedaan antara Linear Transformation dan Non-Linear Transformation?
Perbedaan transformasi linear dan non linear
Perbedaanya adalah: Model linier menunjukkan hubungan antara dua variabel yang mengikuti garis lurus, sedangkan model non linier mengikuti garis yang tidak lurus
7.    Berikan contoh Linear Transformation dan Non-Linear Transformation dari Operasi-Operasi Primitive transformation!
Contoh Transformasi linier.
Carilah matriks baku (A) untuk tranformasi
     T: R3àR2 yang didefinisikan oleh  
     T(x) = (x1+x2, x2+x3), untuk setiap x = (x1, x2, x3) dalam Rn
T: R3 à R2
Basis baku dari R3 adalah:
     e1 = (1, 0, 0) à T(e1) = (1 + 0, 0 + 0) = (1, 0)
     e2 = (0, 1, 0) à T(e2) = (0 + 1, 1 + 0) = (1, 1)
     e2 = (0, 0, 1) à T(e3) = (0 + 0, 0 + 1) = (0, 1)
Maka matriks A nya adalah vektor kolom bentukan dari T(e1), T(e2), dan T(e3), yaitu 
8.    Apakah perbedaan antara Geometric Transformation dan Color Space Transformation?
Perbedaan antara transfromasi geometri dengan transfromasi ruang warna adalah: Untuk transformasi geometri adalah bagian dari geometri yang membahas tentang perubahan (letak, bentuk, penyajian) yang didasarkan pada gambar dan matriks, sedangkan transformasi ruang warna diperlukan untuk melakukan perubahan dari suatu ruang warna menjadi suatu ruang warna yang berbeda.
9.    Apakah yang dimaksud dengan Koordinat Homogen (Homogeneous Coordiantes)?
Koordinat Homogen à Sistem koordinat homogen adalah sistim koordinat yang mempunyai satu dimensi lebih tinggi dari Sistem koordinat yang ditinjau. Digunakan untuk menyatakan semua proses trasformasi dengan perkalian matriks termasuk penggeseran.
10.    Berikan penjelasan mengenai Proyeksi Orthographic?
Proyeksi Orthographic diperoleh apabila sinar proyeksi tegak lurus dengan bidang proyeksi. Proyeksi orthographic sering digunakan untuk menghasilkan tampak depan, tampak belakang, tampak samping dan tampak atas dari sebuah. enda atau disebut sebagai Multiview orthographic. Tampak atas, tampak belakang dan tampak dari samping sebuah benda sering disebut sebagai elevation. Sedangkan tampak dari atas disebut sebagai plan view.
11.    Berikan penjelasan mengenai Proyeksi Perspective?
Proyeksi perspektif memberikan sudut pandang yang lebih realistis dibandingkan proyeksi orthographic. Proyeksi perspektif pada kenyataannya jarak benda terhadap kita akan mempengaruhi bagaimana benda tersebut terlihat. Benda yang terlihat jauh akan kelihatan kecil sedangkan benda yang dekat akan terlihat lebih besar. Efek ini disebut sebagai shortening. Pada perspektif semua garis menghilang pada satu atau lebih titik yang sama atau disebut titik hilang (vanishing point).
12.    Berikan contoh gambar dua proyeksi tersebut!
Proyeksi perspektif


(PERSPEKTIF SUDUT) (2 titik)














                PERSPEKTIF MIRING (3 titik) )
Proyeksi Orthographic






CARA MENGGAMBAR PROYEKSI KUADRAN I (eropa)






CARA MENGGAMBAR PROYEKSI KUADRAN II (amerika)
Referensi: 
11. https://docs.google.com/viewer?a=v&pid=gmail&attid=0.1&thid=13deef372cb03d36&mt=application/vnd.openxmlformats-officedocument.wordprocessingml.document&url=https://mail.google.com/mail/?ui%3D2%26ik%3D3ea85ad837%26view%3Datt%26th%3D13deef372cb03d36%26attid%3D0.1%26disp%3Dsafe%26realattid%3Df_hfb3imxj0%26zw&sig=AHIEtbRMrydm0mwngSou3Ruil8i9GmILEA

TABEL KINERJA
NPM
NAMA
Kinerja
51410729
DEBY CANDRAKIRANA
Mengerjakan secara berkelompok, dengan cara mencari di internet refrensi untuk menjawab pertanyaan, dan sebagian ada dijawab bersama-sama.
54410546

MUHAJIR IBNU SABIL

Mengerjakan secara berkelompok, dengan cara mencari di internet refrensi untuk menjawab pertanyaan, dan sebagian ada dijawab bersama-sama.
56410693

STEVEN

Mengerjakan secara berkelompok, dengan cara mencari di internet refrensi untuk menjawab pertanyaan, dan sebagian ada dijawab bersama-sama.


0 komentar:

Posting Komentar

 
Copyright © 2010 Muhajir Ibnu Sabil. All rights reserved.